

3 新潟大學 Niigata University

High Frequency Radio Channel Measurement toward 5G Mobile Systems

2 nd WEIE @ Aizu Univ.

May 29, 2015

Minseok Kim, Ph.D mskim@eng.niigata-u.ac.jp

Graduate School of Science and Technology, Niigata University

Performance

Voice/Data

Progress of Mobile Communication Systems

■ データレートの高速化

http://www.itu.int/itunews/manager/display.asp?lang=en&year=2008&issue=10&ipage=39

Is High Bit-Rate Still a Target?

- Digital divide is not yet fully resolved in rural areas / developing countries
- How can mobile terminal handle such a high data rate?

Feature Phones

NTT DoCoMo 2008 Winter Model

Is High Bit-Rate Still a Target?

How can mobile terminal handle such a high data rate?

•Smartphone • Tablet

01234P Start e a Ŧ

Is High Bit-Rate Still a Target?

- **Explution of mobile applications**
	- **Cloud computing / SaaS**

SNS and communication

Video-on-demand

Forecast of Mobile Data Traffic

Mobile data traffic is continuously increasing

Mobile Communication in 2020's

- In 2020, the traffic will be approximately 1,000 times than that of 2010
- Further demand to data rate: 30~100 Gb/s per BS

Mobile Communication in 2020's

- **Realization of ultra high bit rate mobile communication**
	- **MIMO Multiplexing**
	- **Nider Bandwidth**
	- **Radio resource management**

Shannon's channel capacity
\n
$$
C = B \log_2 \left(1 + \frac{S}{N} \right)
$$
\n
$$
C = B \sum_{m=1}^{M} \log_2 \left(1 + \frac{S_m}{N} \right)
$$

MIMO Multiplexing

Multipath Environment

MIMO transmission

 \rightarrow Utilization of different propagation paths for different data stream

MIMO Multiplexing

Principle

Singular value decomposition

$\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{H}}$,

U, V: unitary matrices

: real diagonal matrix **Σ**

MIMO eigenmode transimission $\mathbf{y} = \mathbf{U}^{\mathrm{H}} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{H}} \mathbf{V} \mathbf{x}$ $= \sum x$

Isolation of parallel channels

Frequency Allocation in Japan

Ministry of internal affairs and communications (Mar. 2015)

- Serious congestion of the frequency spectrum at lower microwave bands (below 6 GHz)
- **Exploring new frequency bands above 6 GHz is an inevitable** choice to utilize much wider bandwidth in the future

High frequency bands

- Various high frequency bands being interested in the world
	- 11 GHz: broadband fixed microwave relay in Japan
	- 27~29.5 GHz: LMDS (US)
	- 38~39.5 GHz: Fixed p-p link (US)
	- 57~66GHz: offers 5~9 GHz of unlicensed bandwidth across most of the world. 2 GHz/channel
	- 71-76 GHz, 81-86 GHz: Light-licensed E-Band (fixed p-p link), 5 GHz/channel

Features of High Frequency Band

- Advantages: wider bandwidth
- Disadvantages:
	- **Filis' formula for free space link**

$$
G = \frac{P_{\Gamma}}{P_{\Gamma}} = \left(\frac{c}{4\pi df}\right)^2
$$

First Fresnel zone for line-of-sight clearance

$$
R_1 = \sqrt{\frac{cd_1d_2}{(d_1+d_2)f}}
$$

Shannon's channel capacity

$$
C = B \log_2 \left(1 + \frac{S}{N_0 B} \right)
$$

Free Space Path Loss

■ Received power is proportional to the antenna aperture

$$
P_r(d) = P_t \frac{1}{4\pi d^2} A_R
$$

Antenna aperture

$$
A_R = \frac{\lambda^2}{4\pi} G_R
$$

where G_R : gain of Rx antenna

Path loss

$$
L(d) = \frac{1}{4\pi d^2} \frac{\lambda^2}{4\pi} G_R
$$

Free Space Path Loss

■ Isotropic radiation and reception

$$
L(d) = \frac{1}{4\pi d^2} \frac{\lambda^2}{4\pi} G_R
$$

 Isotropic radiation and reception by beamforming

$$
L(d) = \frac{1}{4\pi d^2} \frac{\chi^2}{4\tau} \sqrt{\chi^2}
$$

 Both of radiation and reception by beamforming

$$
L(d) = \frac{1}{4\pi d^2} G_T
$$

Perspective of 5G Cellular Networks

Conventional Macrocell

Small cells (Femto / Microcell / Street-cell)

- Need information about channel parameters
- Appropriate channel models at high frequency bands

R&D Project for Expansion of Radio Spectrum Resources

- **Fundamental study for future mobile system at higher** frequency band (> 5 GHz)
	- **MIMO transmission over 10 Gbps**
	- Bandwidth \rightarrow 400 MHz
	- Carrier frequency \rightarrow 11 GHz (Microwave band)

 \rightarrow 60 GHz (Mm-wave band)

- **This work was partly supported by The Ministry of Internal Affairs** and Communications (MIC), Japan.
	- "The Strategic Information and Communications R&D Promotion Program (SCOPE: No.145004102)" 2014~
	- "The Research and Development Project for Expansion of Radio Spectrum Resources" 2009~2012

Development of 11GHz MIMO-OFDM transceiver

Suyama et. al., IEICE Technical Report, RCS2012-40, May 2012.

First success of above 10 Gb/s transmission in outdoor mobile scenario

Suyama et. al., IEICE General Conference, B-5-110, Mar. 2013.

NTT Docomo tests 10Gbps uplink

Japanese carrier conducts first experiment of mobile packet transmission at this speed, in 400MHz of bandwidth

Disruptive analysis of mobile trendsetters:

- Leading operator strategies
- Key areas of growth
- Long-term disruptions \bullet Hard data

www.MOSAnalysis.com

CAROLINE GABRIEL

Published: 28 February, 2013

Japan's NTT Docomo is sometimes outshone by Softbank and SK Telecom in terms of real world deployments of cutting edge technology, but it remains hard to beat in terms of its futuristic R&D. Its latest test saw the world's first uplink packet transmission to reach 10Gbps.

The outdoor experiment was conducted recently with the Tokyo Institute of Technology, and the cellco said it would help to pave the way for future superfast mobile standards in '5G' and beyond. In the test, which took place in Ishigaki City of Okinawa Prefecture, 400MHz in the 11GHz band was used to transmit from a terminal moving at nine kilometers and hour. MIMO smart antenna arrays, with eight transmitting and 16 receiving antennas, was usedfor spatial multiplexing of different data streams.

http://www.rethink-wireless.com/2013/02/28/ntt-docomo-tests-10gbps-uplink.htm

What is MIMO Channel Sounder?

Instrument to measure MIMO channel matrix

Source: www.channelsounder.de

Radio Channel Sounding

- **Radio channel properties**
	- Transmission system design and evaluation
	- Coverage design
- Characterization of a random process
	- **Temporal property** \rightarrow **Doppler power spectrum**
	- **Figure Frequency property** \rightarrow **Delay power spectrum**
	- Spatial (directional) property \rightarrow Angular power spectrum
- **How to measure?**
	- Sweep in time, frequency, and angle
	- Repetitive measurement, broadband signaling, antenna array

Signaling

- Impulse
- **PN** sequence
- **Chirp signal**
- **Multitone**

Signaling

Multitone

Frequency

Features: flat spectrum shape, constant envelope (CAZAC; good PAPR)

Radio Channel Sounding

Instrument to estimate unknown channel response

$$
y(t) = \int h(\tau)s(t - \tau)d\tau + w(t)
$$

$$
Y(f) = H(f)S(f) + W(f)
$$

where s(t):sounding signal, h(t):channel response, w(t):AWGN

Double-directional Channel

Double-directional channel response means the channel response with isotropic antennas

Antenna De-embedding

28

- **MIMO Channel (antenna embedded) vs. Double-directional** Channel (antenna de-embedded)
- Antenna is designable but channel is uncontrollable
- \rightarrow Antenna and channel should be separately considered

Double-directional Channel

■ Channel response is defined between Tx and Rx ports

Double Directional Channel Model

Signal Model

$$
\boldsymbol{H}(f) = \sum_{l=1}^{L} e^{-j2\pi f \tau_l} \boldsymbol{B}'(f, \phi_l') \boldsymbol{\Gamma}_l \boldsymbol{B}(f, \phi_l)^T \quad \boldsymbol{\Gamma}_l = \begin{bmatrix} \gamma_{l,VV} & \gamma_{l,VH} \\ \gamma_{l,HV} & \gamma_{l,HH} \end{bmatrix}
$$

Complex path weight

 τ_l , ϕ_l , ϕ'_l , Γ_l are estimated by ML method

Antenna Array

Dual-pol 12 element UCA(12V/12H)

Path Parameter Estimation

 Maximum likelihood estimation (MLE) of parameter set $\widehat{\bm{\mu}}$ from measured \bm{y}

$$
\widehat{\boldsymbol{\mu}} = \arg \min ||\boldsymbol{y} - \boldsymbol{h}(\boldsymbol{\mu})||^2
$$

$$
\boldsymbol{\mu} = \{\tau_l, \phi_l, \phi'_l, \Gamma_l, l = 1..N\}
$$

 \rightarrow Minimization of reconstruction error

■ SAGE, RIMAX etc: successful approach in channel sounding

MIMO Multiplexing

Figuency division multiplexing (FDM)

Time division multiplexing (TDM)

MIMO Channel Sounder Development

- **Fully parallel transceivers (up to 24x24 MIMO)**
	- Complete RF circuits both at Tx and Rx
	- Transmission techniques' evaluation
- Scalability: modular architecture with 4 antennas $Tx = \frac{1}{2}$
	- Double directional channel measurement
	- **Nultilink (Multi-user/Multi-site) MIMO measurement**

Rx

 $Tx -$

Tx

MIMO Channel Sounder

Layered multiplexing scheme (FDM/STDM)

M. Kim, et al., "`Novel Scalable MIMO Channel Sounding Technique and Measurement Accuracy Evaluation with Transceiver Impairments," *IEEE Trans. Instrum. Meas.*, Vol.61, No.12, 2012

Hardware Setup

System parameters

Workshop on Electronics and Information Engineering (WEIE 2015)

Antenna #8 CPU **BB Circuits** RF Front-end $#8$ #8 Transmission Processing \cdot -#1<u>∸</u> #1 $\dot{ }$ Quadrature **FPGA** \blacktriangleright DAC LPF Modulator BPF RAM MEM LPF DAC $-3 - 17dB$ 800 MHz Trig. pulse Delay chip 200 MHz 11 GHz LO $PLL-1$ $\sqrt{$ PLL-2 (Normal) 10 MHz ref. 10 MHz 11 GHz LO Cesium Osc. (High-precision)

Transmitter Subsystem

(a) 8 channels Tx subsystem

Subsystem

37

Transmitter with 24 antennas composed of 3 sub-systems

Tx sub-system

Rx sub-system

Measurement Example

Workshop on Electronics and Information Engineering (WEIE 2015)

40

Summary

- 5G mobile system trend
	- **High bit-rate mobile communication systems**
	- Microwave and MIMO
- Channel sounding principle
	- **Channel sounding**
	- Double-directional channel model
- **Hardware architecture**
	- **General architecture**
	- **Developed hardware architecture**

Challenges

- Lack of appropriate channel models at high frequency bands
	- Outdoor, Outdoor-Indoor, and with mobility
	- **Site-specific characteristics**
- **Lack of information about channel parameters**
	- Large scale parameters: path loss, delay/Doppler/angular spread
	- **Small scale parameters:**
- Importance in
	- Develop and test the required physical and higher layer components
	- **Perform link and system level feasibility studies**
	- **Investigate spectrum engineering regulatory issues such as** interference risks and co-existence